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I. Phys.: Condens. Mmer 7 (1995) 3591-3595. Printed in lhe UK 

The effect of disorder on the electronic states of 
two-dimensional systems 
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Depwment of Engineering Physics, Faculty of Sciences, Univexsity of Ackua, 06100 Tandogan. 
Ankm. Turkey 

Received 21 July 1994. in final form 29 December 1994 

Abstract. Under suioble approximations, it is shown that mobility of electrons in two- 
dimensional systems is always zero for a finite value of disorder. irrespective of the type of 
scattering potential. 

1. Introduction 

Two-dimensional 2D systems have attracted special attention in the study of certain transition 
phenomena as being the critical dimension between I D  and 30 whereby we can be certain 
that a transition occurs in three dimensions [I, 21 and does not in one [3, 41. Usually one 
cannot reach a definite conclusion in two dimensions: considering for example the Anderson 
transition, while some authors state the existence of a transition [I, 5-71 some others claim 
that no transition exists [4, 8.91. It is believed that two dimensions bear inherent difficulties 
in nature, thus making the solution of the problem more inhicate. In this connection one 
important work was carried out by Debney [l]  who considered the completely disordered 
lattice by using the Ioffe-Regel condition k L  = 1 where L is the mean free path, k is the 
wave vector. Denoting the ratio of Bohr radius 4 to mean atomic separation a by x he 
found a transition at x = 0.33 in 3D and a transition at x = 0.5 in 2D. Though his result 
for 3D is in accordance with other work, the same cannot be said for the two-dimensional 
result x = 0.5 which falls opposite to physical expectations. Here one would expect that 
transition should take place much earlier than in the three-dimensional case because there 
is a general tendency that the transition point goes down as the dimensionality is reduced. 

In [5-7] they used Hamiltonians with disordered site energies, and criteria for 
localization were different from those of [ll. In 15, 61 the effect of altering the system 
boundaries on a chosen energy-dependent quantity was employed in numerical studies, 
while in [7] the DC conductivity U itself was computed by the memory function method. 

According to [4] the current relaxation kernel M ( o )  has the overall behaviour M 
c( -I/w with frequency in 2D for arbitrarily weak disorder, hence giving U = 0 as o -+ 0. 
Using scaling theory, Licciardello and Thouless [SI concluded that in 2D there might he 
complete localization even in the case of infinitely weak disorder (by anology with the one- 
dimensional case). Later, by an extension of this work, the same conclusion was reached 
in 191. 

In our previous work [IO] we studied the three-dimensional completely disordered lattice 
model of Dehney [I] and found that there was an Anderson transition at the point x = 0.2. 
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Owing to unsettled arguments on diversive results in XI, at that time we left this case to a 
separate study which is the subject of this paper. 

We showed that DC conductivity may be obtained as the l i t  of the real part of the 
frequency-dependent conductivity 0; by [ 11, (2.2), (2.17)] 

B Una1 and B A b  
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Here arL(0) means (a/ao)ar(o) evaluated at OJ = 0, and a:(O) is the second derivative 
defined in the same way. N is total number of free electrons, m is the electronic mass, 
e is the electronic charge and V is the volume of the system a&) is the real part of 
the forceforce correlation function given by equation (2.15) of [ I l l ,  which reads, after 
adapting to our model, 

Equations (I.]), (1.2) bear no approximations other than o being small so they are valid 
under most general conditions like the Kubo conductivity formula. But due to the difficulties 
in the evaluation of commutator averages both in the numerator and in the denominator 
of equation (1.2) it is necessary to employ some approximation scheme. Equation (1.2) 
constitutes the starting point for our study from which one can obtain the following 
expressions for U:, a: 

(1.4) a: = --h 2zfr 2 q 2 lu91zn; ~ " ( A E ' ) .  
2N 

Here n; is the derivative of electron occupation number nk with respect to unperturbed 
energy EX and AE' is the energy difference Ex+q - EI .  6', 6" are the first and second 
derivatives of the Dirac delta functions (for details see [Ill). On carrying out k, q sums 
both ai, a: are seen to be proportional to N ,  therefore mobility 

1 a; 
6 

p = -eN- 

is independent of N .  In our later calculations we left aside the factor N without causing 
any uncertainties. 

2. The model Hamiltonian 

Our model for two dimensions is the same as the one studied in [lo] to find the Anderson 
transition. Since the details of this model were described fully in that work, here we are 
only going to recall necessary points. In the quasimomentum representation the system 
Hamiltonian H = Ho + U has the forms 

HO = Hkk& (2.1) 
k 
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where Hvk = (k’l H l k ) ,  k‘ = k + q, and ck, ck are creation and annihilation operators for 
the electrons. The force component fir’ is given by f:) = -iqJlqc1+,ck. If the diagonal 
elements Hkk were not configuration dependent they would correspond to EA energy values 
as in the case of a regular lattice. The departure of the system from its unperturbed state is 
shown by the term lUq12. In the quasimomentum representation energy E k  has no definite 
meaning in the sense of a dispersion relation because of configuration dependence. So, as 
in our previous work, we have taken a parabolic Ek dependence on k for the A E’ appearing 
in equations (1.3), (1.4). For the 2D case Debney [l]  gives IVY[’ to be 

t 

(2.3) 

Note the existence of a in front of Ik + k‘I2 in IU,, I* expression above. We noticed that this 
4 factor is missing in our two previous work [lo, 121 for 3D case. However we checked 
that our results were not influenced appreciably by this factor. In equation (2.3) has the 
meaning of an average energy 

Ex = Ryd. 
(1  + a ~ k 2 ) 5 / z  

In fact this is the Fourier transform of the interatomic hopping potential averaged over 
different atomic sites with d2 = 12n(ao/a)2. If we want to define a coupling constant g to 
show the strength of disorder we can write lUYl2 = g21u,,I2, g = x z  = (@/a)’ and Iuql2 is 
the same as expression (2.3) except a factor of g2 has been taken out from the each term. 

3. Evaluation of a;, a: 

For the evaluation of ai. a: first we have to define what form n; will take which plays a 
decisive role in the final results. In equations (1.3), (1.4) we should take n; as a convergent 
series 

(3.1) n; = [l  + A; + A’: + Aa A: + * .] 8(&a - &p) 

which is obtained from (14) and (31) of [12] (for details see the appendix). Ak is given by 

(3.2) 

If this expression is evaluated in 3D it is easily seen to converge [lo, 121, however the same 
expression diverges in the 2D case, as w -+ dz 

(3.3) 

Using S / N  = a2 we see that Ak and its derivatives are also proportional to g and can be 
written as 

Ak = gtuy121(w) (3.4) 

by considering the divergent integral I(@) to be finite 

a2 l k ~  I(@) = - - 
2n 

(3.4~) 
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before the limiting case o + dz. If we use the n; expression in (1.3) and (1.4) we find 

2rr 
N 

a: = --[...]g 'h E( ... ) l u , 1 2 & ( ~ ~  --) S"(AE') 
k.k' 

(3.6) 

where square and curved parentheses in equation (3.6) show the same terms as in equation 
(3.5). We have taken the square parentheses outside the sums in both of the equations above 
to make an approximation. We can do this because these parentheses are slowly varying 
functions of k. As we mentioned previously the integral I(w) is so far kept finite, while 
the system disorder is in the vanishing limit g -+ 0. All the calculations will be carried 
out under these assumptions and finally Z(o) will be taken to infinity. We saw that each 
of the sums in (3.5) and (3.6) gave finite values when canied out properly. So, we have 
U: = [...]Cl, a: = [...IC, with CI, C, finite. Using these in the mobility expression we 
have 

(3.7) 

Since the square bracket expression contains powers of Ap, A;, A: i t  diverges in thew -+ A' 
limit where the integral [(U) goes infinite. Because of the divergence of the square bracket 
in equation (3.7) the mobility becomes zero. The limiting value of g -+ 0 corresponds to a 
small value of the disorder in the system where the mean separation between the atoms is 
large. Next we can say tbat higher values of g, corresponding to large disorder. will make 
the system mobility zero even more easily than the g = 0 case. Thus. within the present 
approximation we find that all the states are localized in ZD, which is in accordance with 
e.g. [9]. 

4. Discussion 

Although equations (1.3). (1.4) for or;, 01: contain gzluqlz this does not mean that they are 
the first terms in a perturbation expansion in gz. Rather they are exact, since equation (t .2) 
is exact from which they are derived for w + 0. The commutator average in equation 
(1.2) ([j:"), j ~ i ' ] ) e s  is calculated, by using the Vick's theorem, to be the difference of 
electron occupation numbers ilk - nx+*. When divided by AE', this difference gives us 
the derivative of nk with respect to energy, n;. The exact form of np is not known, but 
it should bear some resemblance to the Fermi function which is valid for the unperturbed 
system n! = j ( & k ) .  In [I21 it was shown that nx and its derivatives should be treated as 
generalized functions whose value at a single point has no meaning. The form of n;. as 
derived from the imaginary part of the average Green function is given by equation (3.1). 
So, this equation relies very much on the averaging process that is applied to the Green 
function. As always some assumptions and approximations enter into the theory at this 
point, and because of these our n; expression may be said to be approximate. Otherwise 
there are no approximations in OUT ai, a: expressions. 

At the beginning we mentioned that for ZD case there are two different views in the 
literature: one is saying that there is a iransition and the other presages no transition at all. 
Our result supports the second view. 
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Appendix 

The electron occupation number nk is obtained from equation (14) of [12] 

(AI) nk = -- I I d o  G%(fJl)f (0) 
H 

where G L  is the imaginary part of the Green function and f ( w )  is the usual Fermi function. 
From equation (31) of [121 

(A2) 
n 

Gik(OJ) = -Jt 8(0 - E L )  4- H 8'(0 - &k)Ar(W) - - 8"(0 - & k )  A:(W) f., . 
2 

Using this expression in equation (Al) we obtain 

nk = [I + A; + A; + A& + . . ] f ( E k )  

+AA[ 1 + A; + 3AA' + 3AZA" + 6AAR + . . .I ~ ( E K  - EF) 
+ A i [ ]  + . . .I # ( E L  - E F )  + , , , (-43) 

which is considered in the convergent regime. As we mentioned in the text, Ai is 
proportional to g, which makes it  small in the g -+ 0 limit. While doing this we consider 
I(o) to be finite (see equation (9)). The contents of the square brackets show similar 
structure but a factor of At appearing in front of any square bracket makes it smaU as 
compared with the first one. Therefore all the square brackets in equation (A31 may be 
dropped except the first. Applying the same ideas to the derivative of equation (A3)  with 
respect to Ek we obtain, after dropping the necessary brackets, 

7I; = [ ~ + A ; + A : + A ~ A ; + . . . ] ~ ( E ~ - E F )  (-44) 
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